3.144 \(\int \frac{\sec (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=144 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{5/2} d}-\frac{43 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{11 \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac{\sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

(2*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(5/2)*d) - (43*ArcTanh[(Sqrt[a]*Sin[c + d*x])/
(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - Sin[c + d*x]/(4*d*(a + a*Cos[c + d*x])^(5/2)) -
(11*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.334748, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2766, 2978, 2985, 2649, 206, 2773} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{5/2} d}-\frac{43 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{11 \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac{\sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(2*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(5/2)*d) - (43*ArcTanh[(Sqrt[a]*Sin[c + d*x])/
(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - Sin[c + d*x]/(4*d*(a + a*Cos[c + d*x])^(5/2)) -
(11*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2))

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{\int \frac{\left (4 a-\frac{3}{2} a \cos (c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac{11 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac{\int \frac{\left (8 a^2-\frac{11}{4} a^2 \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac{11 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac{\int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx}{a^3}-\frac{43 \int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac{11 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^2 d}+\frac{43 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^{5/2} d}-\frac{43 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac{11 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 23.2702, size = 1919, normalized size = 13.33 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

((-2 + 2*I)*(1 + E^(I*c))*(Sqrt[2] - (1 - I)*E^((I/2)*c) + (16 - 16*I)*E^(((3*I)/2)*c + I*d*x) + (20 + 20*I)*S
qrt[2]*E^((2*I)*c + ((3*I)/2)*d*x) - (34 - 34*I)*E^(((5*I)/2)*c + (2*I)*d*x) - (20 + 20*I)*Sqrt[2]*E^((3*I)*c
+ ((5*I)/2)*d*x) + (16 - 16*I)*E^(((7*I)/2)*c + (3*I)*d*x) + (4 + 4*I)*Sqrt[2]*E^((4*I)*c + ((7*I)/2)*d*x) - (
1 - I)*E^(((9*I)/2)*c + (4*I)*d*x) + (8*I)*E^((I/2)*(c + d*x)) - 16*Sqrt[2]*E^(I*(c + d*x)) - (40*I)*E^(((3*I)
/2)*(c + d*x)) + 34*Sqrt[2]*E^((2*I)*(c + d*x)) + (40*I)*E^(((5*I)/2)*(c + d*x)) - 16*Sqrt[2]*E^((3*I)*(c + d*
x)) - (8*I)*E^(((7*I)/2)*(c + d*x)) + Sqrt[2]*E^((4*I)*(c + d*x)) - (4 + 4*I)*Sqrt[2]*E^((I/2)*(2*c + d*x)))*x
*Cos[c/2 + (d*x)/2]^5)/(((-1 - I) + Sqrt[2]*E^((I/2)*c))*(-1 + E^(I*c))*(I - 2*Sqrt[2]*E^((I/2)*(c + d*x)) - (
4*I)*E^(I*(c + d*x)) + 2*Sqrt[2]*E^(((3*I)/2)*(c + d*x)) + I*E^((2*I)*(c + d*x)))^2*(a*(1 + Cos[c + d*x]))^(5/
2)) - ((4*I)*Sqrt[2]*ArcTan[(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(-Cos[c/4 +
 (d*x)/4] + Sqrt[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2]^5)/(d*(a*(1 + Cos[c + d*x]))^
(5/2)) + (43*Cos[c/2 + (d*x)/2]^5*Log[Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4]])/(4*d*(a*(1 + Cos[c + d*x]))^(5
/2)) - (43*Cos[c/2 + (d*x)/2]^5*Log[Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4]])/(4*d*(a*(1 + Cos[c + d*x]))^(5/2
)) - (2*Sqrt[2]*Cos[c/2 + (d*x)/2]^5*Log[2 - Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(d*(a*(
1 + Cos[c + d*x]))^(5/2)) + ((1 - I)*Sqrt[2]*ArcTan[(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4
 + (d*x)/4])/(Cos[c/4 + (d*x)/4] + Sqrt[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2]^5*((1
+ I)*Cos[c/4] + Sqrt[2]*Cos[c/4] - (1 - I)*Sin[c/4] - I*Sqrt[2]*Sin[c/4])*((-1 - I)*Cos[c/4] + Sqrt[2]*Cos[c/4
] + (1 - I)*Sin[c/4] - I*Sqrt[2]*Sin[c/4]))/(d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/2] + Sin[c/2])) - ((1 + I)*
Cos[c/2 + (d*x)/2]^5*Log[2 + Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]]*((1 + I)*Cos[c/4] + Sqrt
[2]*Cos[c/4] - (1 - I)*Sin[c/4] - I*Sqrt[2]*Sin[c/4])*((-1 - I)*Cos[c/4] + Sqrt[2]*Cos[c/4] + (1 - I)*Sin[c/4]
 - I*Sqrt[2]*Sin[c/4]))/(Sqrt[2]*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/2] + Sin[c/2])) - ((16*I)*ArcTan[((2*I)
*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)/4])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/2 + (d*x)/2]
^5*Cot[c/2])/(d*(a*(1 + Cos[c + d*x]))^(5/2)*Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]) + (8*Sqrt[2]*Cos[c/2 + (d
*x)/2]^5*Csc[c/2]*(-(d*x*Cos[c/2]) + 2*Log[Sqrt[2] + 2*Cos[(d*x)/2]*Sin[c/2] + 2*Cos[c/2]*Sin[(d*x)/2]]*Sin[c/
2] + ((4*I)*Sqrt[2]*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)/4])/Sqrt[-2 + 4*Cos[c/2]^2 +
4*Sin[c/2]^2]]*Cos[c/2])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]))/(d*(a*(1 + Cos[c + d*x]))^(5/2)*(4*Cos[c/2]^
2 + 4*Sin[c/2]^2)) - Cos[c/2 + (d*x)/2]^5/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d
*x)/4])^4) - (11*Cos[c/2 + (d*x)/2]^5)/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)
/4])^2) + Cos[c/2 + (d*x)/2]^5/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4])^4)
+ (11*Cos[c/2 + (d*x)/2]^5)/(8*d*(a*(1 + Cos[c + d*x]))^(5/2)*(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4])^2)

________________________________________________________________________________________

Maple [B]  time = 3.241, size = 325, normalized size = 2.3 \begin{align*} -{\frac{1}{32\,d}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 43\,\sqrt{2}\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a-32\,\ln \left ( -4\,{\frac{a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{2}}} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a-32\,\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+11\,\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+2\,\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \right ){a}^{-{\frac{7}{2}}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+cos(d*x+c)*a)^(5/2),x)

[Out]

-1/32/a^(7/2)/cos(1/2*d*x+1/2*c)^3*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(43*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1
/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^4*a-32*ln(-4*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*
2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2)))*cos(1/2*d*x+1/2*c)^4*a-32*ln(4/(2*
cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))
*cos(1/2*d*x+1/2*c)^4*a+11*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^2+2*a^(1/2)*2^(1/
2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)/(a*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.77469, size = 807, normalized size = 5.6 \begin{align*} \frac{43 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} + 2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 32 \,{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) - 4 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (11 \, \cos \left (d x + c\right ) + 15\right )} \sin \left (d x + c\right )}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(43*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*s
qrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c
) + 1)) + 32*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(
d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d
*x + c)^2)) - 4*sqrt(a*cos(d*x + c) + a)*(11*cos(d*x + c) + 15)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*
cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 3.18545, size = 285, normalized size = 1.98 \begin{align*} -\frac{2 \, \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}{\left (\frac{2 \, \sqrt{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a^{3}} + \frac{13 \, \sqrt{2}}{a^{3}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{43 \, \sqrt{2} \log \left ({\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a^{\frac{5}{2}}} - \frac{64 \, \log \left ({\left |{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a{\left (2 \, \sqrt{2} + 3\right )} \right |}\right )}{a^{\frac{5}{2}}} + \frac{64 \, \log \left ({\left |{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + a{\left (2 \, \sqrt{2} - 3\right )} \right |}\right )}{a^{\frac{5}{2}}}}{64 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/64*(2*sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/a^3 + 13*sqrt(2)/a^3)*tan(1/2*d*
x + 1/2*c) - 43*sqrt(2)*log((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/a^(5/2) - 6
4*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/a^(5/2)
+ 64*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/a^(5/
2))/d